Clinical implications of studying the radial artery, its branches, and variations

Dr. Sujana Arani and Dr. Ananda Sagari A

DOI: https://doi.org/10.22271/27069567.2021.v3.i1i.439

Abstract

Background: The cubital fossa lies near the radial artery, a brachial artery terminal branch. Anatomists and physicians’ study radial artery branching patterns, origin, and trajectory. Coronary angiography and bypass operations increasingly employ the radial artery. Vascular and plastic surgeons use the superficial and deep palmar arches, Radial artery origin, course, and branches as markers.

Methods: The standard dissection technique was used for this. 40 human upper limbs were used for this analysis. The adult upper limb specimens used in this study were taken from embalmed cadavers donated to the Department of Anatomy, Mallareddy Institute of Medical Sciences, Hyderabad, Telangana, India, between the October 2020 to July 2021, for use in the first year MBBS and BDS dissection courses.

Results: This study was conducted to document and provide insight into radial artery anatomy both in its normal and variant forms. Subjects were selected from the Medical College and the Institute of Anatomy for the study. There was a fullness to the superficial palmar arch in 80% of people and a lack of perfection in the other 20%. Forty percent of the whole arch was made up of type I arches, 8% of the arches were of type II, and 2% of the arches were of type V. The proportion of type I incomplete arches was 16%, whereas the proportion of type II arches was 16%.

Conclusion: Only 6% of people in this research had a radial artery that originated high in the arm from the brachial artery. Overall, radial arteries averaged 21.25 centimetres in length. In 96% and 4% of cases, respectively, the recurrent radial artery originated from the radial artery and the brachial artery. Only around 4% of samples had a recurrent radial artery that was considered an accessory.

Keywords: Brachial artery, superficial and deep palmar arches, and the radial artery

Introduction

The radial artery develops from a terminal branch of the brachial artery in the cubital fossa, 1 centimetre distal to the elbow's flexor crease. The radial artery's path seems to be a straight offshoot of the main stem [1]. The deep palmar arch is formed when this artery anastomoses with the ulnar artery, which it reaches from the cubital fossa. There are three branches from the main stem of the radial artery. The first segment extends from the wrist's origin to the styloid process's apex, the second segment curved around the lateral aspect of the wrist to the proximal portion of the first interosseous space, and the third segment travels through the interosseous space into the palm [2, 3].

The radial artery and its two comitant veins run along the forearm's preaxial border. On the majority of the forearm, it is covered by skin, superficial and deep fasciae, but is occluded by the belly of brachioradialis towards the proximal end. From above downward, the radial artery rests on the tendons of the biceps, supinator, insertion of the pronator teres, lateral half of the flexor digitorum superficialis [4], flexor pollicis longus, and the pronator quadratus. There's a connection between the radial nerve's superficial branch and the artery's middle third. Anterolateral to the brachioradialis and medial to the pronator teres, it then travels inferolaterally between the brachioradialis and flexor carpi radialis to reach the anterior side of the distal end of the radius between the tendons of both muscles. The radial pulse may be felt just here, against the bone. The artery then makes a gentle curve along the radial aspect of the wrist joint, beginning just beyond the styloid process and ending at the first interosseous gap. It travels between the thumb's long abductor and short extensor muscles and the lateral carpal ligament. Here it is superficially crossed by the origin of the cephalic vein and the digital branches of the radial nerve, and it is dorsally connected to the scaphoid and trapezium. As a result, it just appears on the surface [5, 6].
After entering the forearm, the radial artery enters the palm of the hand between the two heads of the first dorsal interosseous muscle. After joining the deep branch of the ulnar artery, the ulnar artery makes a medial bend and travels between the transverse and oblique head of adductor pollicis before continuing its path over the base of the metacarpal bones with a small forward convexity to create the deep palmar arch. It’s located next to the lumbricals and the long flexor tendons [7].

Numerous diagnostic procedures and therapeutic treatments depend on access to the radial artery. The next section will go through a few of the most salient ones. Through its entire forearm course, the radial artery remains superficial and is hence simple to catheterize. Therefore, it may serve as a tool in coronary angiography as well as in invasive coronary angioplasty and stenting procedures [8, 9].

Materials and Method

The standard dissection technique was used for this. 40 human upper limbs were used for this analysis. The adult upper limb specimens used in this study were taken from embalmed cadavers donated to the Department of Anatomy, Mallareddy Institute of Medical Sciences, Hyderabad, Telangana, India, between the October 2020 to July 2021, for use in the first year MBBS and BDS dissection courses.

The top two-thirds and the middle third of the arm were cut horizontally. From the median cubital fossa down to the wrist, a vertical incision was created that crossed the palm and ended at the middle finger. In this case, the incision was taken all the way up till it met the initial incision that had been made horizontally. The skin flap was elevated medially and laterally by a second horizontal incision made at the wrist. From the vertical incision down to the thumb, an oblique incision was created in the palm. The skin flaps were elevated after a second horizontal incision was made in the palm at the level of the base of the metacarpals. Without harming the tissues underneath the fascia, a fascial flap was reflected and the deep fascia of the forearm was separated from the cubital fossa to the proximal edge of the flexor retinaculum. The flexor muscles are located medially while the extensor muscles are located laterally beneath the fascia. The brachio radialis is the front of the arm's most superficial muscle. The extensor carpi radialis longus was exposed by a lateral pull, and the extensor and flexor groups of muscles were disentangled. Within this notch are the radial artery and the superficial radial nerve.

Results

In 36 of the 40 upper limb specimens examined, the radial artery originated in the brachial artery in the cubital fossa. The RA was derived from the BA in 10 of the arms studied (Table 1).

Table 1: Location of Radial Artery Root

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Origin of RA</th>
<th>Frequency (n=40)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From BA in CF</td>
<td>36</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>From BA in arm</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

The dissections showed that the RA followed a typical path in every case. The length was calculated by removing the high origin and measuring from the RA origin in CF to the styloid process. The shortest RA was 18 centimetres, the longest 23.7 centimetres, and the average was 21.25 centimetres (Table 2).

In 37 of 40 dissected upper extremities, RRA originated in the region of the RA closest to its origin. The first cases of RRA in the upper extremities were documented in the UA in 2003. (Table 3).

Table 2: Radial Artery Length

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Artery Length</th>
<th>Length (cms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Min. length</td>
<td>19.00</td>
</tr>
<tr>
<td>2</td>
<td>Max. length</td>
<td>22.6</td>
</tr>
<tr>
<td>3</td>
<td>Mean length</td>
<td>20.28</td>
</tr>
</tbody>
</table>

After separating into the Arteria princeps Pollicis and the Arteria Radialis, the Superficial Palmar Arch (SPB) of each of the 40 dissected lower extremities comes to a close. Indicis, and in 7 of them it supplies the thenar muscles. In three cases, it bifurcates into the five general digital arteries (Table 4).

Table 3: The Root of the Recurrent Radial Artery

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Origin of RRA</th>
<th>Frequency (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From RA</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>From UA</td>
<td>03</td>
</tr>
</tbody>
</table>

In 28 of 40 dissected specimens, the superficial phalangeal branch (SPB) of RA travels through the thenar muscle material, whereas in 9 specimens, the RA travels superficially to the thenar muscles and finally terminates by feeding the thenar muscles (Table 5).

Table 4: Inferior Palmar Fraction of Rheumatoid Arthritis

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>SPB of RA</th>
<th>Frequency (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Completing the SPA</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Divides into APP and ARI</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Ends by supplying the thenar muscles</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Divides into common digital arteries to the 1st and 2nd web space</td>
<td>3</td>
</tr>
</tbody>
</table>

In 26 of the 40 dissected specimens, the APP and ARI originated as a single trunk from the Superficial Palmar Arch; in 5 specimens, the SPA was created only by the UA; in 4 specimens, the CDA reached the first web gap; and in 5 specimens, the SPB terminated in the CDA (Table 6).

Table 5: Inferior Palmar Fraction of Rheumatoid Arthritis

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>SPB of RA</th>
<th>Frequency (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passes through the thenar muscles</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Passes superficial to thenar muscles</td>
<td>09</td>
</tr>
<tr>
<td>3</td>
<td>Ends by supplying thenar muscles</td>
<td>03</td>
</tr>
</tbody>
</table>

Table 6: The Beginnings of APP and ARI

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Origin of APP and ARI</th>
<th>No. of samples (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From SPA (formed by the of UA and RA)</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>From SPA formed by the UA alone</td>
<td>05</td>
</tr>
<tr>
<td>3</td>
<td>From common digital artery to the first web space(from SPB)</td>
<td>04</td>
</tr>
<tr>
<td>4</td>
<td>As the terminal branches of SPB</td>
<td>05</td>
</tr>
</tbody>
</table>

Discussion

According to G J Romanes’s account in Cunningham’s Anatomy, the RA may be nonexistent and its forearm region supplied by other arteries. According to the work of
Suganthy J. et al., a patient was found to have no evidence of RA in their right upper extremity. Omer Faruk Dogan et al. found that the lack of RA was linked to the persistence of the median artery in 8.33% of patients who had CABG. According to Susan Standing, author of "Gray's Anatomy," the Radial artery (RA) originates from the Brachial artery (BA) in the cubital fossa (CF), located about a centimetre below the elbow crease. Researchers Chandini gupta et al. claimed that 94.8 percent of CF RA was caused by the BA. Nasr AY found that BA in the CF was the starting point for RA 84 percent of the time. For 86% of samples examined by Sharadhakumar, the RA was shown to originate from the BA at the level of the neck of radius. According to Prakash et al., the BA in CF is where RA first appeared. Eighty-six percent of RA, according to Nitin R. Mudiraj et al. [10,11] Similar to the aforementioned research, we found that 96% of RA in CF was caused by the BA. This research contradicts the findings of suganthy J et al. and Omer Faruk Dogan et al., who report no evidence of RA. Omer Faruk Dogan et al. also discovered that the median artery did not remain persistent in their investigation. W According to the research of Henry Hollinshead, HORA occurred in 14.27% of cases, with 2.13 percent of RA coming from the AA and 12.14 percent from the BA in the arm. According to Ernest W April's book, RA may originate from the BA anywhere in the arm in 14% of cases. 4.9% of the cases studied by Baral P et al. had RA that had originated in the arm BA. There was an instance of RA traced back to the first AA segment, as described by Priya S patil et al. According to Ileana Dinea et al., HORA was detected in 7.14 percent of samples. According to the research conducted by Chandini gupta et al., researchers found that AA accounted for 2.66 percent of RA and BA accounted for 2.66 percent of RA in the arm. According to Nasr A Y, 16% of tissues tested positive for HORA. Proximal to the junction of the medial and lateral roots of the median nerve is the location where Shiny et al. described a case of HORA in AA [10,13]. 13% of specimens in the research by Sharadhakumar had HORA from the BA in the arm. The origin of RA in the arm is from the BA in 10.1% of cases, according to the research of Shubha et al. 1.7% of patients who had a transradial coronary angiography had HORA, according to a study by Li L et al. Based on research by Padma Varlekar et al., 3.12% of RA cases originate in the BA of the arm [14,15].

Three specimens in the current investigation showed HORA from BA in the arm. Since the radial artery's diameter is so close to that of the coronary artery, it was the third most frequent artery utilised as a transplant in CABG. Higher-level RA may have a smaller diameter, making grafting impossible, and also making catheterization unsuccessful. When compared to internal mammary artery grafting, the rate of hypoperfusion syndrome after RA autografting is lower [16, 17]. When RA begins farther up in the arm, the risk of injury and severe bleeding increases62. Accidental ligation during humerus surgery, mistaken it for a vein, might cause hand gangrene. It is common practise to auscultate the BA in the CF to get a reading of the blood pressure. Low blood pressure monitoring may be connected with HORA. Consequently, orthopaedic and vascular operations need an understanding of the cause of RA. According to Thomas Walmsley's book, the brachioradialis muscle covers the RA's proximal portion while the skin, superficial fascia, and deep fascia cover the distal portion. In certain cases, he said, RA occurs on the surface rather than in the deep fascia. As reported by Sachs M. et al. in the anatomical snuff box, RA takes a superficial path in 0.87 percent of specimens. According to a case study by Aparna G. et al., the radial artery might sometimes run superficial to the tendons of the anatomical snuff box [16-18].

All of the samples in this investigation had a typical RA course. No evidence of a superficial course of RA was identified. In the lateral side of the forearm, the BA divides into branches that supply the skin and the muscles. Since most of its path in the forearm is superficial (RA is often located in the deep to deep fascia), it may be readily accessed for interventional and diagnostic procedures. There is no evidence that the progression of RA is connected to the forearm's neurovascular systems [19-22]. Because of the hand's UAs collateral blood supply, it may be used for invasive treatments like catheterization and grafting. When puncturing the median cubital vein, the superficial course of RA in the CF increases the risk of mistaking the tissue for a vein. If you inject anything intra-arterially by accident, you might end up with arterial spasms or even gangrene in your hand. Forearm RA tends to progress superficially, making it more vulnerable to injury. It is possible to reconstruct the mandible and thumb from the radius. The RA muscle fibres provide vasculature in the bony flap. Harvesting of the radius occurs between the proximal insertion of the pronator teres and the distal insertion of the brachioradialis. Therefore, it is crucial to understand how RA develops [23-25].

In this analysis, 96% of RRA was attributed to the RA, 4% to the UA, and 0% to the BA. Only around 4% of samples were found to have accessory RRA. The current study's findings are consistent with those of the preceding studies by Atsumori Hamahata A et al., Prakash et al., and Vazquez T et al. Since the anastomosis is already well established in the area surrounding the elbow, microsurgery and reconstruction may be performed using an RRA based flap. The rate of survival with an RRA flap is rather high. When the flap is being harvested, having the Accessory RRA present is helpful in a number of different ways [26-28]. All tissues tested positive for DPA, and the RA had a role in arch development in this analysis. As the artery arches provide abundant blood flow to the hand, any lesion there will bleed heavily and heal rapidly. An understanding of the hand's vascular system is crucial for the success of microsurgical reconstruction techniques on the hand.

Conclusion
Since the Radial artery's branching pattern has such far-reaching clinical and radiological ramifications, it has long been of interest to anatomists and surgeons. The aim of the present research was to dissect human adult cadavers and record the normal and variant anatomy of the radial artery. From this, we inferred the following. In 94% of samples, the Radial artery originated at the brachial artery in the cubital fossa, whereas in 6% of samples, it originated at the brachial artery in the arm. Most forearm and hand operations focus on the superficial palmar arch because its proper function is essential to the continued circulation of the hand and fingers. Doppler ultrasonography and arterial angiography are two methods that may be used to determine the hand's vascular pattern before invasive and interventional operations are performed.
Conflict of interest
None

Funding support
Nil

References
11. Dr. Chandrika Teli, Dr. Nilesh N Kate, Dr. Paarthipan. Hing division and variation in brachial artery branching pattern, Journal on Dental and Medical Sciences, 2013;3(6):68-70.

How to Cite This Article

Creative Commons (CC) License
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.